Armando cartas numerológicas

Contribución de Agustín Santiago Gutiérrez

Descripción del problema

Un reconocido numerólogo se encuentra estudiando las propiedades de los números naturales con el fin de crear cartas mágicas personalizadas que ayuden a sus clientes a defenderse de los que ellos llaman "números de mala suerte".

Cada cliente tiene, según sus preferencias, sus propios números de mala suerte pero el numerólogo siempre aplica la misma receta: incorpora en sus cartas mágicas secuencias de buena suerte.

Mediante rebuscados e inentendibles estudios numerológicos, el numerólogo sabe que una secuencia de números es de buena suerte cuando cada número se obtiene del anterior mediante el siguiente procedimiento:

- Primero que nada, se factoriza el número en factores primos.
- Se ordenan estos factores de menor a mayor (con repeticiones).
- Se concatenan ("se pegan") todos estos números para formar un solo número más grande.

Así, por ejemplo, tenemos que la secuencia 15 \rightarrow 35 \rightarrow 57 \rightarrow 319 \rightarrow 1129 es de buena suerte:

- $15 = 3 \times 5$, que unidos forman 35
- $35 = 5 \times 7$, que unidos forman 57
- $57 = 3 \times 19$, que unidos forman 319
- $319 = 11 \times 29$, que unidos forman 1129

Con 1129 termina la secuencia dado que es un número primo y no se puede seguir factorizando.

Si en cambio el numerólogo comenzara con el número 18, la secuencia de buena suerte seguiría con 233 dado que 18 = $2 \times 3 \times 3$ y se obtiene al unir todos los

factores el número 233, que es primo. Por lo tanto $18 \rightarrow 233$ es toda la secuencia.

A veces estas secuencias pueden generar números demasiado grandes e imprácticos. Eso es lo que ocurre por ejemplo al comenzar con el número 8, lo que da lugar a la secuencia: 222 \rightarrow 2337 \rightarrow 31941 $33371313 \rightarrow 311123771 \rightarrow 7149317941 \rightarrow$ 22931219729 112084656339 \rightarrow $3347911118189 \rightarrow 11613496501723$ $97130517917327 \rightarrow 531832651281459 \rightarrow$ 3331113965338635107 que culmina en el número primo 3331113965338635107.

Estas secuencias largas no son prácticas para armar las cartas, así que el numerólogo decide trabajar únicamente con números **menores o iguales que 10.000**. En cuanto aparezca uno mayor que 10.000, lo descartará y terminará la secuencia donde haya quedado. De esta manera, la secuencia comenzando en 8 le quedaría simplemente $8 \rightarrow 222 \rightarrow 2337$.

Debes ayudar al numerólogo a armar las cartas, creando una función que dado el número *N* original, indique la cantidad de **factores primos distintos** del número *N* y, además de eso, calcule toda la secuencia de buena suerte que comienza en *N*.

Aclaración: Un número entero $p \ge 2$ es un número primo, si sus únicos divisores son 1 y el mismo número p. Los primeros números primos son 2, 3, 5, 7, 11, etc.

Versión 1.1 hoja 1 de 2

Descripción de la función

Debes implementar la función

 ${\tt numerologo(N\,:\,ENTERO;}$

secuencia : ARREGLO[] de ENTEROS)

Donde N es el número inicial de la secuencia de buena suerte, y secuencia es un arreglo en el cual se debe almacenar toda la secuencia de buena suerte iniciada en N.

Evaluador

El evaluador local lee el número N por stdin.

Devuelve por pantalla una línea con la cantidad de factores primos distintos de N y otra línea con la secuencia de buena suerte.

Puntaje

Se obtiene el 30 % del puntaje por indicar correctamente la cantidad de factores primos distintos del número *N* recibido, y el 70 % restante por calcular correctamente la secuencia.

Cotas

2 < N < 10.000

Ejemplo

Si se llamara a la función con N = 20, la función debería devolver 2, ya que 20 tiene 2 factores primos distintos (el 2 y el 5).

Además, se deberían cargar en el arreglo secuencia los valores 20, 225 y 3355, en ese orden, ya que la secuencia empezando en 20 es $20 \rightarrow 225 \rightarrow 3355$.

Si en cambio se llamara con N = 31, se debería devolver 1, y en el arreglo secuencia un único valor 31.

Subtareas

En casos de prueba por un valor total de 20 puntos, será N <10

En casos de prueba por un valor total de 30 puntos, los números de la secuencia tendrán un máximo de 2 factores primos en total (por ejemplo, no aparecerá el 8, que tiene 3 factores).

Versión 1.1 hoja 2 de 2